View Jupyter notebook on the GitHub.

Deep learning examples#

Binder

This notebooks contains examples with neural network models.

Table of contents

  • Loading dataset

  • Architecture

  • Testing models

    • Baseline

    • DeepAR

    • DeepARNative

    • TFT

    • TFTNative

    • RNN

    • MLP

    • Deep State Model

    • N-BEATS Model

    • PatchTS Model

    • Chronos Model

    • Chronos Bolt Model

    • TimesFM Model

[1]:
!pip install "etna[torch,chronos,timesfm]" -q
[2]:
import warnings

warnings.filterwarnings("ignore")
[3]:
import random

import numpy as np
import pandas as pd
import torch

from etna.analysis import plot_backtest
from etna.datasets.tsdataset import TSDataset
from etna.metrics import MAE
from etna.metrics import MAPE
from etna.metrics import SMAPE
from etna.models import SeasonalMovingAverageModel
from etna.pipeline import Pipeline
from etna.transforms import DateFlagsTransform
from etna.transforms import LabelEncoderTransform
from etna.transforms import LagTransform
from etna.transforms import LinearTrendTransform
from etna.transforms import SegmentEncoderTransform
from etna.transforms import StandardScalerTransform
[4]:
def set_seed(seed: int = 42):
    """Set random seed for reproducibility."""
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

1. Loading dataset#

We are going to take some toy dataset. Let’s load and look at it.

[5]:
df = pd.read_csv("data/example_dataset.csv")
df.head()
[5]:
timestamp segment target
0 2019-01-01 segment_a 170
1 2019-01-02 segment_a 243
2 2019-01-03 segment_a 267
3 2019-01-04 segment_a 287
4 2019-01-05 segment_a 279

Our library works with the special data structure TSDataset. Let’s create it as it was done in “Get started” notebook.

[6]:
ts = TSDataset(df, freq="D")
ts.head(5)
[6]:
segment segment_a segment_b segment_c segment_d
feature target target target target
timestamp
2019-01-01 170 102 92 238
2019-01-02 243 123 107 358
2019-01-03 267 130 103 366
2019-01-04 287 138 103 385
2019-01-05 279 137 104 384

2. Architecture#

Our library has two types of models:

First, let’s describe the pytorch-forecasting models, because they require a special handling. There are two ways to use these models: default one and via using PytorchForecastingDatasetBuilder for using extra features.

To include extra features we use PytorchForecastingDatasetBuilder class.

Let’s look at it closer.

[7]:
from etna.models.nn.utils import PytorchForecastingDatasetBuilder
[8]:
?PytorchForecastingDatasetBuilder

We can see a pretty scary signature, but don’t panic, we will look at the most important parameters.

  • time_varying_known_reals — known real values that change across the time (real regressors), now it it necessary to add “time_idx” variable to the list;

  • time_varying_unknown_reals — our real value target, set it to ["target"];

  • max_prediction_length — our horizon for forecasting;

  • max_encoder_length — length of past context to use;

  • static_categoricals — static categorical values, for example, if we use multiple segments it can be some its characteristics including identifier: “segment”;

  • time_varying_known_categoricals — known categorical values that change across the time (categorical regressors);

  • target_normalizer — class for normalization targets across different segments.

Our library currently supports these pytorch-forecasting models:

  • DeepAR (will be removed in version 3.0),

  • TFT (will be removed in version 3.0).

As for the native neural network models, they are simpler to use, because they don’t require PytorchForecastingTransform. We will see how to use them on examples.

3. Testing models#

In this section we will test our models on example.

[9]:
HORIZON = 7
metrics = [SMAPE(), MAPE(), MAE()]

3.1 Baseline#

For comparison let’s train some simple model as a baseline.

[10]:
model_sma = SeasonalMovingAverageModel(window=5, seasonality=7)
linear_trend_transform = LinearTrendTransform(in_column="target")

pipeline_sma = Pipeline(model=model_sma, horizon=HORIZON, transforms=[linear_trend_transform])
[11]:
metrics_sma, forecast_sma, fold_info_sma = pipeline_sma.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[12]:
metrics_sma
[12]:
segment SMAPE MAPE MAE fold_number
0 segment_a 6.343943 6.124296 33.196532 0
0 segment_a 5.346946 5.192455 27.938101 1
0 segment_a 7.510347 7.189999 40.028565 2
1 segment_b 7.178822 6.920176 17.818102 0
1 segment_b 5.672504 5.554555 13.719200 1
1 segment_b 3.327846 3.359712 7.680919 2
2 segment_c 6.430429 6.200580 10.877718 0
2 segment_c 5.947090 5.727531 10.701336 1
2 segment_c 6.186545 5.943679 11.359563 2
3 segment_d 4.707899 4.644170 39.918646 0
3 segment_d 5.403426 5.600978 43.047332 1
3 segment_d 2.505279 2.543719 19.347565 2
[13]:
score = metrics_sma["SMAPE"].mean()
print(f"Average SMAPE for Seasonal MA: {score:.3f}")
Average SMAPE for Seasonal MA: 5.547
[14]:
plot_backtest(forecast_sma, ts, history_len=20)
../_images/tutorials_202-NN_examples_28_0.png

3.2 DeepAR#

[15]:
from etna.models.nn import DeepARModel

Before training let’s fix seeds for reproducibility.

[16]:
set_seed()

Default way#

[17]:
model_deepar = DeepARModel(
    encoder_length=HORIZON,
    decoder_length=HORIZON,
    trainer_params=dict(max_epochs=20, gradient_clip_val=0.1),
    lr=0.01,
    train_batch_size=16,
)
metrics = [SMAPE(), MAPE(), MAE()]

pipeline_deepar = Pipeline(model=model_deepar, horizon=HORIZON)
[18]:
metrics_deepar, forecast_deepar, fold_info_deepar = pipeline_deepar.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 0
3 | rnn                    | LSTM                   | 1.6 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
1.6 K     Trainable params
0         Non-trainable params
1.6 K     Total params
0.006     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=20` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   18.2s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 0
3 | rnn                    | LSTM                   | 1.6 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
1.6 K     Trainable params
0         Non-trainable params
1.6 K     Total params
0.006     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=20` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:   35.7s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 0
3 | rnn                    | LSTM                   | 1.6 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
1.6 K     Trainable params
0         Non-trainable params
1.6 K     Total params
0.006     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=20` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   53.8s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   53.8s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[19]:
metrics_deepar
[19]:
segment SMAPE MAPE MAE fold_number
0 segment_a 11.991789 11.136389 60.220598 0
0 segment_a 3.738700 3.802559 19.429980 1
0 segment_a 9.372195 9.127999 47.781682 2
1 segment_b 8.085439 7.699522 20.147598 0
1 segment_b 4.951007 4.924278 11.986952 1
1 segment_b 5.498259 5.821214 12.443898 2
2 segment_c 5.561446 5.633262 9.442320 0
2 segment_c 7.060725 6.841531 12.387765 1
2 segment_c 5.387418 5.496499 9.709654 2
3 segment_d 6.425422 6.287132 55.566659 0
3 segment_d 3.536992 3.587428 27.874826 1
3 segment_d 6.445370 6.539983 50.958487 2

To summarize it we will take mean value of SMAPE metric because it is scale tolerant.

[20]:
score = metrics_deepar["SMAPE"].mean()
print(f"Average SMAPE for DeepAR: {score:.3f}")
Average SMAPE for DeepAR: 6.505

Dataset Builder: creating dataset for DeepAR with etxtra features.#

[21]:
from pytorch_forecasting.data import GroupNormalizer

num_lags = 10

transform_date = DateFlagsTransform(
    day_number_in_week=True,
    day_number_in_month=False,
    day_number_in_year=False,
    week_number_in_month=False,
    week_number_in_year=False,
    month_number_in_year=False,
    season_number=False,
    year_number=False,
    is_weekend=False,
    out_column="dateflag",
)
transform_lag = LagTransform(
    in_column="target",
    lags=[HORIZON + i for i in range(num_lags)],
    out_column="target_lag",
)
lag_columns = [f"target_lag_{HORIZON+i}" for i in range(num_lags)]

dataset_builder_deepar = PytorchForecastingDatasetBuilder(
    max_encoder_length=HORIZON,
    max_prediction_length=HORIZON,
    time_varying_known_reals=["time_idx"] + lag_columns,
    time_varying_unknown_reals=["target"],
    time_varying_known_categoricals=["dateflag_day_number_in_week"],
    target_normalizer=GroupNormalizer(groups=["segment"]),
)

Now we are going to start backtest.

[22]:
set_seed()

model_deepar = DeepARModel(
    dataset_builder=dataset_builder_deepar,
    trainer_params=dict(max_epochs=20, gradient_clip_val=0.1),
    lr=0.01,
    train_batch_size=16,
)

pipeline_deepar = Pipeline(
    model=model_deepar,
    horizon=HORIZON,
    transforms=[transform_lag, transform_date],
)
[23]:
metrics_deepar, forecast_deepar, fold_info_deepar = pipeline_deepar.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 35
3 | rnn                    | LSTM                   | 2.2 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
2.3 K     Trainable params
0         Non-trainable params
2.3 K     Total params
0.009     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=20` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   17.5s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 35
3 | rnn                    | LSTM                   | 2.2 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
2.3 K     Trainable params
0         Non-trainable params
2.3 K     Total params
0.009     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=20` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:   35.1s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 35
3 | rnn                    | LSTM                   | 2.2 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
2.3 K     Trainable params
0         Non-trainable params
2.3 K     Total params
0.009     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=20` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   53.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   53.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished

Let’s compare results across different segments.

[24]:
metrics_deepar
[24]:
segment SMAPE MAPE MAE fold_number
0 segment_a 6.805594 6.531085 35.181100 0
0 segment_a 3.220954 3.193369 16.990387 1
0 segment_a 6.250622 5.970213 33.195587 2
1 segment_b 7.510020 7.240360 18.528828 0
1 segment_b 3.394223 3.402076 8.272498 1
1 segment_b 2.550600 2.556611 6.122029 2
2 segment_c 2.711825 2.738573 4.532955 0
2 segment_c 4.593296 4.459803 8.320400 1
2 segment_c 4.944589 4.842140 9.074217 2
3 segment_d 5.825108 5.610574 51.673619 0
3 segment_d 4.951743 5.077607 39.208165 1
3 segment_d 5.460451 5.284515 46.397409 2

To summarize it we will take mean value of SMAPE metric because it is scale tolerant.

[25]:
score = metrics_deepar["SMAPE"].mean()
print(f"Average SMAPE for DeepAR: {score:.3f}")
Average SMAPE for DeepAR: 4.852

Visualize results.

[26]:
plot_backtest(forecast_deepar, ts, history_len=20)
../_images/tutorials_202-NN_examples_49_0.png

3.3 DeepARNative#

It is recommended to use our native implementation of DeepAR, we will remove Pytorch Forecasting version in etna 3.0.0.

[27]:
from etna.models.nn import DeepARNativeModel
[28]:
num_lags = 7

scaler = StandardScalerTransform(in_column="target")
transform_date = DateFlagsTransform(
    day_number_in_week=True,
    day_number_in_month=False,
    day_number_in_year=False,
    week_number_in_month=False,
    week_number_in_year=False,
    month_number_in_year=False,
    season_number=False,
    year_number=False,
    is_weekend=False,
    out_column="dateflag",
)
transform_lag = LagTransform(
    in_column="target",
    lags=[HORIZON + i for i in range(num_lags)],
    out_column="target_lag",
)
label_encoder = LabelEncoderTransform(
    in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
)

embedding_sizes = {"dateflag_day_number_in_week_label": (7, 7)}
[29]:
set_seed()

model_deepar_native = DeepARNativeModel(
    input_size=num_lags + 1,
    encoder_length=2 * HORIZON,
    decoder_length=HORIZON,
    embedding_sizes=embedding_sizes,
    lr=0.01,
    scale=False,
    n_samples=100,
    trainer_params=dict(max_epochs=2),
)

pipeline_deepar_native = Pipeline(
    model=model_deepar_native,
    horizon=HORIZON,
    transforms=[scaler, transform_lag, transform_date, label_encoder],
)
[30]:
metrics_deepar_native, forecast_deepar_native, fold_info_deepar_native = pipeline_deepar_native.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type           | Params
----------------------------------------------
0 | loss       | GaussianLoss   | 0
1 | embedding  | MultiEmbedding | 56
2 | rnn        | LSTM           | 4.3 K
3 | projection | ModuleDict     | 34
----------------------------------------------
4.4 K     Trainable params
0         Non-trainable params
4.4 K     Total params
0.018     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=2` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    1.1s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type           | Params
----------------------------------------------
0 | loss       | GaussianLoss   | 0
1 | embedding  | MultiEmbedding | 56
2 | rnn        | LSTM           | 4.3 K
3 | projection | ModuleDict     | 34
----------------------------------------------
4.4 K     Trainable params
0         Non-trainable params
4.4 K     Total params
0.018     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=2` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    2.2s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type           | Params
----------------------------------------------
0 | loss       | GaussianLoss   | 0
1 | embedding  | MultiEmbedding | 56
2 | rnn        | LSTM           | 4.3 K
3 | projection | ModuleDict     | 34
----------------------------------------------
4.4 K     Trainable params
0         Non-trainable params
4.4 K     Total params
0.018     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=2` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    3.3s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    3.3s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.4s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.6s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.6s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[31]:
score = metrics_deepar_native["SMAPE"].mean()
print(f"Average SMAPE for DeepARNative: {score:.3f}")
Average SMAPE for DeepARNative: 5.816
[32]:
plot_backtest(forecast_deepar_native, ts, history_len=20)
../_images/tutorials_202-NN_examples_57_0.png

3.4 TFT#

Let’s move to the next model.

[33]:
from etna.models.nn import TFTModel
[34]:
set_seed()

Default way#

[35]:
model_tft = TFTModel(
    encoder_length=2 * HORIZON,
    decoder_length=HORIZON,
    trainer_params=dict(max_epochs=60, gradient_clip_val=0.1),
    lr=0.01,
    train_batch_size=32,
)

pipeline_tft = Pipeline(
    model=model_tft,
    horizon=HORIZON,
)
[36]:
metrics_tft, forecast_tft, fold_info_tft = pipeline_tft.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 0
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.7 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.8 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.2 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.4 K    Trainable params
0         Non-trainable params
18.4 K    Total params
0.074     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=60` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:  1.2min remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 0
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.7 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.8 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.2 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.4 K    Trainable params
0         Non-trainable params
18.4 K    Total params
0.074     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=60` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:  2.4min remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 0
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.7 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.8 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.2 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.4 K    Trainable params
0         Non-trainable params
18.4 K    Total params
0.074     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=60` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  3.6min remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  3.6min finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[37]:
metrics_tft
[37]:
segment SMAPE MAPE MAE fold_number
0 segment_a 47.938348 38.337110 207.205824 0
0 segment_a 13.373072 12.681063 68.228463 1
0 segment_a 31.370020 26.633958 150.253693 2
1 segment_b 25.325660 30.129167 70.937051 0
1 segment_b 10.611735 10.544364 25.538180 1
1 segment_b 21.439563 18.929667 47.594628 2
2 segment_c 60.741901 88.137427 149.651367 0
2 segment_c 10.590052 10.181659 18.510978 1
2 segment_c 18.217563 16.497026 31.354285 2
3 segment_d 89.380608 61.471369 535.634404 0
3 segment_d 36.360018 30.180033 254.863220 1
3 segment_d 71.920184 52.521257 452.829930 2
[38]:
score = metrics_tft["SMAPE"].mean()
print(f"Average SMAPE for TFT: {score:.3f}")
Average SMAPE for TFT: 36.439

Dataset Builder#

[39]:
set_seed()

num_lags = 10
lag_columns = [f"target_lag_{HORIZON+i}" for i in range(num_lags)]

transform_date = DateFlagsTransform(day_number_in_week=True, day_number_in_month=False, out_column="dateflag")
transform_lag = LagTransform(
    in_column="target",
    lags=[HORIZON + i for i in range(num_lags)],
    out_column="target_lag",
)

dataset_builder_tft = PytorchForecastingDatasetBuilder(
    max_encoder_length=HORIZON,
    max_prediction_length=HORIZON,
    time_varying_known_reals=["time_idx"],
    time_varying_unknown_reals=["target"],
    time_varying_known_categoricals=["dateflag_day_number_in_week"],
    static_categoricals=["segment"],
    target_normalizer=GroupNormalizer(groups=["segment"]),
)
[40]:
model_tft = TFTModel(
    dataset_builder=dataset_builder_tft,
    trainer_params=dict(max_epochs=50, gradient_clip_val=0.1),
    lr=0.01,
    train_batch_size=32,
)

pipeline_tft = Pipeline(
    model=model_tft,
    horizon=HORIZON,
    transforms=[transform_lag, transform_date],
)
[41]:
metrics_tft, forecast_tft, fold_info_tft = pipeline_tft.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 47
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.8 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.9 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.3 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.9 K    Trainable params
0         Non-trainable params
18.9 K    Total params
0.075     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=50` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   59.3s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 47
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.8 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.9 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.3 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.9 K    Trainable params
0         Non-trainable params
18.9 K    Total params
0.075     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=50` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:  2.0min remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 47
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.8 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.9 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.3 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.9 K    Trainable params
0         Non-trainable params
18.9 K    Total params
0.075     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=50` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  3.0min remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  3.0min finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[42]:
metrics_tft
[42]:
segment SMAPE MAPE MAE fold_number
0 segment_a 6.219016 5.998432 31.660413 0
0 segment_a 6.268309 6.003822 32.816515 1
0 segment_a 9.697435 9.145774 51.779083 2
1 segment_b 7.691970 7.346405 19.040307 0
1 segment_b 5.268597 5.134976 12.925631 1
1 segment_b 4.920808 4.749094 11.951202 2
2 segment_c 4.135875 4.029833 7.123058 0
2 segment_c 2.613439 2.556872 4.862113 1
2 segment_c 5.812696 5.542748 10.524150 2
3 segment_d 6.789527 6.496418 60.241071 0
3 segment_d 3.483833 3.488098 28.402134 1
3 segment_d 4.614983 4.484013 38.315325 2
[43]:
score = metrics_tft["SMAPE"].mean()
print(f"Average SMAPE for TFT: {score:.3f}")
Average SMAPE for TFT: 5.626
[44]:
plot_backtest(forecast_tft, ts, history_len=20)
../_images/tutorials_202-NN_examples_73_0.png

3.5 TFTNative#

It is recommended to use our native implementation of TFT, we will remove Pytorch Forecasting version in etna 3.0.0.

[45]:
from etna.models.nn import TFTNativeModel
[46]:
num_lags = 7
lag_columns = [f"target_lag_{HORIZON+i}" for i in range(num_lags)]

transform_lag = LagTransform(
    in_column="target",
    lags=[HORIZON + i for i in range(num_lags)],
    out_column="target_lag",
)
transform_date = DateFlagsTransform(
    day_number_in_week=True,
    day_number_in_month=False,
    day_number_in_year=False,
    week_number_in_month=False,
    week_number_in_year=False,
    month_number_in_year=False,
    season_number=False,
    year_number=False,
    is_weekend=False,
    out_column="dateflag",
)
scaler = StandardScalerTransform(in_column=["target"])

encoder = SegmentEncoderTransform()
label_encoder = LabelEncoderTransform(
    in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
)
[47]:
set_seed()

model_tft_native = TFTNativeModel(
    encoder_length=2 * HORIZON,
    decoder_length=HORIZON,
    static_categoricals=["segment_code"],
    time_varying_categoricals_encoder=["dateflag_day_number_in_week_label"],
    time_varying_categoricals_decoder=["dateflag_day_number_in_week_label"],
    time_varying_reals_encoder=["target"] + lag_columns,
    time_varying_reals_decoder=lag_columns,
    num_embeddings={"segment_code": len(ts.segments), "dateflag_day_number_in_week_label": 7},
    n_heads=1,
    num_layers=2,
    hidden_size=32,
    lr=0.0001,
    train_batch_size=16,
    trainer_params=dict(max_epochs=5, gradient_clip_val=0.1),
)
pipeline_tft_native = Pipeline(
    model=model_tft_native, horizon=HORIZON, transforms=[transform_lag, scaler, transform_date, encoder, label_encoder]
)
[48]:
metrics_tft_native, forecast_tft_native, fold_info_tft_native = pipeline_tft_native.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                            | Type                     | Params
------------------------------------------------------------------------------
0  | loss                            | MSELoss                  | 0
1  | static_scalers                  | ModuleDict               | 0
2  | static_embeddings               | ModuleDict               | 160
3  | time_varying_scalers_encoder    | ModuleDict               | 512
4  | time_varying_embeddings_encoder | ModuleDict               | 256
5  | time_varying_scalers_decoder    | ModuleDict               | 448
6  | time_varying_embeddings_decoder | ModuleDict               | 256
7  | static_variable_selection       | VariableSelectionNetwork | 6.5 K
8  | encoder_variable_selection      | VariableSelectionNetwork | 222 K
9  | decoder_variable_selection      | VariableSelectionNetwork | 180 K
10 | static_covariate_encoder        | StaticCovariateEncoder   | 17.2 K
11 | lstm_encoder                    | LSTM                     | 16.9 K
12 | lstm_decoder                    | LSTM                     | 16.9 K
13 | gated_norm1                     | GateAddNorm              | 2.2 K
14 | temporal_fusion_decoder         | TemporalFusionDecoder    | 16.0 K
15 | gated_norm2                     | GateAddNorm              | 2.2 K
16 | output_fc                       | Linear                   | 33
------------------------------------------------------------------------------
481 K     Trainable params
0         Non-trainable params
481 K     Total params
1.927     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   17.9s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                            | Type                     | Params
------------------------------------------------------------------------------
0  | loss                            | MSELoss                  | 0
1  | static_scalers                  | ModuleDict               | 0
2  | static_embeddings               | ModuleDict               | 160
3  | time_varying_scalers_encoder    | ModuleDict               | 512
4  | time_varying_embeddings_encoder | ModuleDict               | 256
5  | time_varying_scalers_decoder    | ModuleDict               | 448
6  | time_varying_embeddings_decoder | ModuleDict               | 256
7  | static_variable_selection       | VariableSelectionNetwork | 6.5 K
8  | encoder_variable_selection      | VariableSelectionNetwork | 222 K
9  | decoder_variable_selection      | VariableSelectionNetwork | 180 K
10 | static_covariate_encoder        | StaticCovariateEncoder   | 17.2 K
11 | lstm_encoder                    | LSTM                     | 16.9 K
12 | lstm_decoder                    | LSTM                     | 16.9 K
13 | gated_norm1                     | GateAddNorm              | 2.2 K
14 | temporal_fusion_decoder         | TemporalFusionDecoder    | 16.0 K
15 | gated_norm2                     | GateAddNorm              | 2.2 K
16 | output_fc                       | Linear                   | 33
------------------------------------------------------------------------------
481 K     Trainable params
0         Non-trainable params
481 K     Total params
1.927     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:   36.2s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                            | Type                     | Params
------------------------------------------------------------------------------
0  | loss                            | MSELoss                  | 0
1  | static_scalers                  | ModuleDict               | 0
2  | static_embeddings               | ModuleDict               | 160
3  | time_varying_scalers_encoder    | ModuleDict               | 512
4  | time_varying_embeddings_encoder | ModuleDict               | 256
5  | time_varying_scalers_decoder    | ModuleDict               | 448
6  | time_varying_embeddings_decoder | ModuleDict               | 256
7  | static_variable_selection       | VariableSelectionNetwork | 6.5 K
8  | encoder_variable_selection      | VariableSelectionNetwork | 222 K
9  | decoder_variable_selection      | VariableSelectionNetwork | 180 K
10 | static_covariate_encoder        | StaticCovariateEncoder   | 17.2 K
11 | lstm_encoder                    | LSTM                     | 16.9 K
12 | lstm_decoder                    | LSTM                     | 16.9 K
13 | gated_norm1                     | GateAddNorm              | 2.2 K
14 | temporal_fusion_decoder         | TemporalFusionDecoder    | 16.0 K
15 | gated_norm2                     | GateAddNorm              | 2.2 K
16 | output_fc                       | Linear                   | 33
------------------------------------------------------------------------------
481 K     Trainable params
0         Non-trainable params
481 K     Total params
1.927     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   54.7s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   54.7s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[49]:
score = metrics_tft_native["SMAPE"].mean()
print(f"Average SMAPE for TFTNative: {score:.3f}")
Average SMAPE for TFTNative: 6.185
[50]:
plot_backtest(forecast_tft_native, ts, history_len=20)
../_images/tutorials_202-NN_examples_81_0.png

3.6 RNN#

We’ll use RNN model based on LSTM cell

[51]:
from etna.models.nn import RNNModel
[52]:
num_lags = 7

scaler = StandardScalerTransform(in_column="target")
transform_lag = LagTransform(
    in_column="target",
    lags=[HORIZON + i for i in range(num_lags)],
    out_column="target_lag",
)
transform_date = DateFlagsTransform(
    day_number_in_week=True,
    day_number_in_month=False,
    day_number_in_year=False,
    week_number_in_month=False,
    week_number_in_year=False,
    month_number_in_year=False,
    season_number=False,
    year_number=False,
    is_weekend=False,
    out_column="dateflag",
)
segment_encoder = SegmentEncoderTransform()
label_encoder = LabelEncoderTransform(
    in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
)

embedding_sizes = {"dateflag_day_number_in_week_label": (7, 7)}
[53]:
set_seed()

model_rnn = RNNModel(
    input_size=num_lags + 1,
    encoder_length=2 * HORIZON,
    decoder_length=HORIZON,
    embedding_sizes=embedding_sizes,
    trainer_params=dict(max_epochs=5),
    lr=1e-3,
)

pipeline_rnn = Pipeline(
    model=model_rnn,
    horizon=HORIZON,
    transforms=[scaler, transform_lag, transform_date, label_encoder],
)
[54]:
metrics_rnn, forecast_rnn, fold_info_rnn = pipeline_rnn.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type           | Params
----------------------------------------------
0 | loss       | MSELoss        | 0
1 | embedding  | MultiEmbedding | 56
2 | rnn        | LSTM           | 4.3 K
3 | projection | Linear         | 17
----------------------------------------------
4.4 K     Trainable params
0         Non-trainable params
4.4 K     Total params
0.017     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    2.3s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type           | Params
----------------------------------------------
0 | loss       | MSELoss        | 0
1 | embedding  | MultiEmbedding | 56
2 | rnn        | LSTM           | 4.3 K
3 | projection | Linear         | 17
----------------------------------------------
4.4 K     Trainable params
0         Non-trainable params
4.4 K     Total params
0.017     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    4.7s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type           | Params
----------------------------------------------
0 | loss       | MSELoss        | 0
1 | embedding  | MultiEmbedding | 56
2 | rnn        | LSTM           | 4.3 K
3 | projection | Linear         | 17
----------------------------------------------
4.4 K     Trainable params
0         Non-trainable params
4.4 K     Total params
0.017     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    7.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    7.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[55]:
score = metrics_rnn["SMAPE"].mean()
print(f"Average SMAPE for LSTM: {score:.3f}")
Average SMAPE for LSTM: 5.653
[56]:
plot_backtest(forecast_rnn, ts, history_len=20)
../_images/tutorials_202-NN_examples_88_0.png

3.7 MLP#

Base model with linear layers and activations.

[57]:
from etna.models.nn import MLPModel
[58]:
num_lags = 14

transform_lag = LagTransform(
    in_column="target",
    lags=[HORIZON + i for i in range(num_lags)],
    out_column="target_lag",
)
transform_date = DateFlagsTransform(
    day_number_in_week=True,
    day_number_in_month=False,
    day_number_in_year=False,
    week_number_in_month=False,
    week_number_in_year=False,
    month_number_in_year=False,
    season_number=False,
    year_number=False,
    is_weekend=False,
    out_column="dateflag",
)
segment_encoder = SegmentEncoderTransform()
label_encoder = LabelEncoderTransform(
    in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
)

embedding_sizes = {"dateflag_day_number_in_week_label": (7, 7)}
[59]:
set_seed()

model_mlp = MLPModel(
    input_size=num_lags,
    hidden_size=[16],
    embedding_sizes=embedding_sizes,
    decoder_length=HORIZON,
    trainer_params=dict(max_epochs=50, gradient_clip_val=0.1),
    lr=0.001,
    train_batch_size=16,
)
metrics = [SMAPE(), MAPE(), MAE()]

pipeline_mlp = Pipeline(model=model_mlp, transforms=[transform_lag, transform_date, label_encoder], horizon=HORIZON)
[60]:
metrics_mlp, forecast_mlp, fold_info_mlp = pipeline_mlp.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name      | Type           | Params
---------------------------------------------
0 | loss      | MSELoss        | 0
1 | embedding | MultiEmbedding | 56
2 | mlp       | Sequential     | 369
---------------------------------------------
425       Trainable params
0         Non-trainable params
425       Total params
0.002     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=50` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    1.7s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name      | Type           | Params
---------------------------------------------
0 | loss      | MSELoss        | 0
1 | embedding | MultiEmbedding | 56
2 | mlp       | Sequential     | 369
---------------------------------------------
425       Trainable params
0         Non-trainable params
425       Total params
0.002     Total estimated model params size (MB)
IOPub message rate exceeded.
The notebook server will temporarily stop sending output
to the client in order to avoid crashing it.
To change this limit, set the config variable
`--NotebookApp.iopub_msg_rate_limit`.

Current values:
NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec)
NotebookApp.rate_limit_window=3.0 (secs)

`Trainer.fit` stopped: `max_epochs=50` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    4.9s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    4.9s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.2s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[61]:
score = metrics_mlp["SMAPE"].mean()
print(f"Average SMAPE for MLP: {score:.3f}")
Average SMAPE for MLP: 5.929
[62]:
plot_backtest(forecast_mlp, ts, history_len=20)
../_images/tutorials_202-NN_examples_96_0.png

3.8 Deep State Model#

Deep State Model works well with multiple similar time-series. It inffers shared patterns from them.

We have to determine the type of seasonality in data (based on data granularity), SeasonalitySSM class is responsible for this. In this example, we have daily data, so we use day-of-week (7 seasons) and day-of-month (31 seasons) models. We also set the trend component using the LevelTrendSSM class. Also in the model we use time-based features like day-of-week, day-of-month and time independent feature representing the segment of time series.

[63]:
from etna.models.nn import DeepStateModel
from etna.models.nn.deepstate import CompositeSSM
from etna.models.nn.deepstate import LevelTrendSSM
from etna.models.nn.deepstate import SeasonalitySSM
[64]:
from etna.transforms import FilterFeaturesTransform
[65]:
num_lags = 7

transforms = [
    SegmentEncoderTransform(),
    StandardScalerTransform(in_column="target"),
    DateFlagsTransform(
        day_number_in_week=True,
        day_number_in_month=True,
        day_number_in_year=False,
        week_number_in_month=False,
        week_number_in_year=False,
        month_number_in_year=False,
        season_number=False,
        year_number=False,
        is_weekend=False,
        out_column="dateflag",
    ),
    LagTransform(
        in_column="target",
        lags=[HORIZON + i for i in range(num_lags)],
        out_column="target_lag",
    ),
    LabelEncoderTransform(
        in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
    ),
    LabelEncoderTransform(
        in_column="dateflag_day_number_in_month", strategy="none", out_column="dateflag_day_number_in_month_label"
    ),
    FilterFeaturesTransform(exclude=["dateflag_day_number_in_week", "dateflag_day_number_in_month"]),
]


embedding_sizes = {
    "dateflag_day_number_in_week_label": (7, 7),
    "dateflag_day_number_in_month_label": (31, 7),
    "segment_code": (4, 7),
}
[66]:
monthly_smm = SeasonalitySSM(num_seasons=31, timestamp_transform=lambda x: x.day - 1)
weekly_smm = SeasonalitySSM(num_seasons=7, timestamp_transform=lambda x: x.weekday())
[67]:
set_seed()

model_dsm = DeepStateModel(
    ssm=CompositeSSM(seasonal_ssms=[weekly_smm, monthly_smm], nonseasonal_ssm=LevelTrendSSM()),
    input_size=num_lags,
    encoder_length=2 * HORIZON,
    decoder_length=HORIZON,
    embedding_sizes=embedding_sizes,
    trainer_params=dict(max_epochs=5),
    lr=1e-3,
)

pipeline_dsm = Pipeline(
    model=model_dsm,
    horizon=HORIZON,
    transforms=transforms,
)
[68]:
metrics_dsm, forecast_dsm, fold_info_dsm = pipeline_dsm.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type           | Params
----------------------------------------------
0 | embedding  | MultiEmbedding | 315
1 | RNN        | LSTM           | 11.2 K
2 | projectors | ModuleDict     | 5.0 K
----------------------------------------------
16.5 K    Trainable params
0         Non-trainable params
16.5 K    Total params
0.066     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    8.7s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type           | Params
----------------------------------------------
0 | embedding  | MultiEmbedding | 315
1 | RNN        | LSTM           | 11.2 K
2 | projectors | ModuleDict     | 5.0 K
----------------------------------------------
16.5 K    Trainable params
0         Non-trainable params
16.5 K    Total params
0.066     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:   17.8s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type           | Params
----------------------------------------------
0 | embedding  | MultiEmbedding | 315
1 | RNN        | LSTM           | 11.2 K
2 | projectors | ModuleDict     | 5.0 K
----------------------------------------------
16.5 K    Trainable params
0         Non-trainable params
16.5 K    Total params
0.066     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   27.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   27.0s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.3s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.3s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[69]:
score = metrics_dsm["SMAPE"].mean()
print(f"Average SMAPE for DeepStateModel: {score:.3f}")
Average SMAPE for DeepStateModel: 5.520
[70]:
plot_backtest(forecast_dsm, ts, history_len=20)
../_images/tutorials_202-NN_examples_105_0.png

3.9 N-BEATS Model#

This architecture is based on backward and forward residual links and a deep stack of fully connected layers.

There are two types of models in the library. The NBeatsGenericModel class implements a generic deep learning model, while the NBeatsInterpretableModel is augmented with certain inductive biases to be interpretable (trend and seasonality).

[71]:
from etna.models.nn import NBeatsGenericModel
from etna.models.nn import NBeatsInterpretableModel
[72]:
set_seed()

model_nbeats_generic = NBeatsGenericModel(
    input_size=2 * HORIZON,
    output_size=HORIZON,
    loss="smape",
    stacks=30,
    layers=4,
    layer_size=256,
    trainer_params=dict(max_epochs=1000),
    lr=1e-3,
)

pipeline_nbeats_generic = Pipeline(
    model=model_nbeats_generic,
    horizon=HORIZON,
    transforms=[],
)
[73]:
metrics_nbeats_generic, forecast_nbeats_generic, _ = pipeline_nbeats_generic.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 206 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
206 K     Trainable params
0         Non-trainable params
206 K     Total params
0.826     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=1000` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   35.5s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 206 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
206 K     Trainable params
0         Non-trainable params
206 K     Total params
0.826     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=1000` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:  1.2min remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 206 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
206 K     Trainable params
0         Non-trainable params
206 K     Total params
0.826     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=1000` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  1.8min remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  1.8min finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[74]:
score = metrics_nbeats_generic["SMAPE"].mean()
print(f"Average SMAPE for N-BEATS Generic: {score:.3f}")
Average SMAPE for N-BEATS Generic: 6.027
[75]:
plot_backtest(forecast_nbeats_generic, ts, history_len=20)
../_images/tutorials_202-NN_examples_111_0.png
[76]:
model_nbeats_interp = NBeatsInterpretableModel(
    input_size=4 * HORIZON,
    output_size=HORIZON,
    loss="smape",
    trend_layer_size=64,
    seasonality_layer_size=256,
    trainer_params=dict(max_epochs=2000),
    lr=1e-3,
)

pipeline_nbeats_interp = Pipeline(
    model=model_nbeats_interp,
    horizon=HORIZON,
    transforms=[],
)
[77]:
metrics_nbeats_interp, forecast_nbeats_interp, _ = pipeline_nbeats_interp.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 224 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
223 K     Trainable params
385       Non-trainable params
224 K     Total params
0.896     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=2000` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   32.4s remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 224 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
223 K     Trainable params
385       Non-trainable params
224 K     Total params
0.896     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=2000` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:  1.1min remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 224 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
223 K     Trainable params
385       Non-trainable params
224 K     Total params
0.896     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=2000` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  1.7min remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  1.7min finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[78]:
score = metrics_nbeats_interp["SMAPE"].mean()
print(f"Average SMAPE for N-BEATS Interpretable: {score:.3f}")
Average SMAPE for N-BEATS Interpretable: 5.656
[79]:
plot_backtest(forecast_nbeats_interp, ts, history_len=20)
../_images/tutorials_202-NN_examples_115_0.png

3.10 PatchTS Model#

Model with transformer encoder that uses patches of timeseries as input words and linear decoder.

[80]:
from etna.models.nn import PatchTSModel
[81]:
set_seed()

model_patchts = PatchTSModel(
    decoder_length=HORIZON,
    encoder_length=2 * HORIZON,
    patch_len=1,
    trainer_params=dict(max_epochs=30),
    lr=1e-3,
    train_batch_size=64,
)

pipeline_patchts = Pipeline(
    model=model_patchts, horizon=HORIZON, transforms=[StandardScalerTransform(in_column="target")]
)

metrics_patchts, forecast_patchts, fold_info_patchs = pipeline_patchts.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type       | Params
------------------------------------------
0 | loss       | MSELoss    | 0
1 | model      | Sequential | 397 K
2 | projection | Sequential | 1.8 K
------------------------------------------
399 K     Trainable params
0         Non-trainable params
399 K     Total params
1.598     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=30` reached.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:  4.4min remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type       | Params
------------------------------------------
0 | loss       | MSELoss    | 0
1 | model      | Sequential | 397 K
2 | projection | Sequential | 1.8 K
------------------------------------------
399 K     Trainable params
0         Non-trainable params
399 K     Total params
1.598     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=30` reached.
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:  8.9min remaining:    0.0s
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type       | Params
------------------------------------------
0 | loss       | MSELoss    | 0
1 | model      | Sequential | 397 K
2 | projection | Sequential | 1.8 K
------------------------------------------
399 K     Trainable params
0         Non-trainable params
399 K     Total params
1.598     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=30` reached.
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed: 13.5min remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed: 13.5min finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[82]:
score = metrics_patchts["SMAPE"].mean()
print(f"Average SMAPE for PatchTS: {score:.3f}")
Average SMAPE for PatchTS: 6.295
[83]:
plot_backtest(forecast_patchts, ts, history_len=20)
../_images/tutorials_202-NN_examples_120_0.png

3.11 Chronos Model#

Chronos is pretrained model for zero-shot forecasting.

[84]:
from etna.models.nn import ChronosModel

To get list of available models use list_models.

[85]:
ChronosModel.list_models()
[85]:
['amazon/chronos-t5-tiny',
 'amazon/chronos-t5-mini',
 'amazon/chronos-t5-small',
 'amazon/chronos-t5-base',
 'amazon/chronos-t5-large']

Let’s try the smallest model.

[86]:
set_seed()

model_chronos = ChronosModel(path_or_url="amazon/chronos-t5-tiny", encoder_length=2 * HORIZON, num_samples=10)

pipeline_chronos = Pipeline(model=model_chronos, horizon=HORIZON, transforms=[])

metrics_chronos, forecast_chronos, fold_info_chronos = pipeline_chronos.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.3s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.3s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s finished
[87]:
score = metrics_chronos["SMAPE"].mean()
print(f"Average SMAPE for Chronos tiny: {score:.3f}")
Average SMAPE for Chronos tiny: 12.999

Not good. Let’s try to set encoder_length equals the available history of dataset. As available history length for each fold is different, so you can set encoder_length equals to length of the initial dataset - model will get all available history as a context.

[88]:
dataset_length = ts.size()[0]
[89]:
set_seed()

model_chronos = ChronosModel(path_or_url="amazon/chronos-t5-tiny", encoder_length=dataset_length, num_samples=10)

pipeline_chronos = Pipeline(model=model_chronos, horizon=HORIZON, transforms=[])

metrics_chronos, forecast_chronos, fold_info_chronos = pipeline_chronos.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.4s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.6s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.6s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s finished
[90]:
score = metrics_chronos["SMAPE"].mean()
print(f"Average SMAPE for Chronos tiny with long context: {score:.3f}")
Average SMAPE for Chronos tiny with long context: 7.094

Better. Let’s get more complex model.

[91]:
set_seed()

model_chronos = ChronosModel(path_or_url="amazon/chronos-t5-small", encoder_length=dataset_length, num_samples=10)

pipeline_chronos = Pipeline(model=model_chronos, horizon=HORIZON, transforms=[])

metrics_chronos, forecast_chronos, fold_info_chronos = pipeline_chronos.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.3s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.3s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.4s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.4s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.6s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    1.3s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    1.9s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    1.9s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s finished
[92]:
score = metrics_chronos["SMAPE"].mean()
print(f"Average SMAPE for Chronos small with long context: {score:.3f}")
Average SMAPE for Chronos small with long context: 5.446
[93]:
plot_backtest(forecast_chronos, ts, history_len=20)
../_images/tutorials_202-NN_examples_135_0.png

We get competitive results compared to results of models, that were directly trained on forecasting dataset. For the best results you can try the most complex model chronos-t5-large.

3.12 Chronos Bolt Model#

Chronos Bolt is one more Chronos-like model with faster and more accurate forecasts. ChronosBoltModel has the same interface as ChronosModel.

[94]:
from etna.models.nn import ChronosBoltModel
[95]:
ChronosBoltModel.list_models()
[95]:
['amazon/chronos-bolt-tiny',
 'amazon/chronos-bolt-mini',
 'amazon/chronos-bolt-small',
 'amazon/chronos-bolt-base']
[96]:
set_seed()

model_chronos_bolt = ChronosBoltModel(path_or_url="amazon/chronos-bolt-small", encoder_length=dataset_length)

pipeline_chronos_bolt = Pipeline(model=model_chronos_bolt, horizon=HORIZON, transforms=[])

metrics_chronos_bolt, forecast_chronos_bolt, fold_info_chronos_bolt = pipeline_chronos_bolt.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.3s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.3s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.3s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.1s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s finished
[97]:
score = metrics_chronos_bolt["SMAPE"].mean()
print(f"Average SMAPE for Chronos Bolt small with long context: {score:.3f}")
Average SMAPE for Chronos Bolt small with long context: 5.877

3.13 TimesFm Model#

TimesFMModel is one more pretrained model for zero-shot forecasting. It has similar interface to ChronosBoltModel and ChronosModel.

[98]:
from etna.models.nn import TimesFMModel

Now only one model is available.

[99]:
TimesFMModel.list_models()
[99]:
['google/timesfm-1.0-200m-pytorch']

Be careful. encoder_length needs to be a multiplier of 32.

[100]:
set_seed()

model_timesfm = TimesFMModel(path_or_url="google/timesfm-1.0-200m-pytorch", encoder_length=32)

pipeline_timesfm = Pipeline(model=model_timesfm, horizon=HORIZON, transforms=[])

metrics_timesfm, forecast_timesfm, fold_info_timesfm = pipeline_timesfm.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.4s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.6s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.6s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.4s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.7s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    1.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    1.0s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s finished
[101]:
score = metrics_timesfm["SMAPE"].mean()
print(f"Average SMAPE for TimesFM: {score:.3f}")
Average SMAPE for TimesFM: 5.249
[102]:
plot_backtest(forecast_timesfm, ts, history_len=20)
../_images/tutorials_202-NN_examples_149_0.png

Model can work with exogenous features.

[103]:
set_seed()

transforms = [
    SegmentEncoderTransform(),
    LagTransform(in_column="target", lags=[HORIZON], out_column="lag"),
    DateFlagsTransform(day_number_in_week=True, day_number_in_month=False, is_weekend=False, out_column="dateflag"),
]
model_timesfm = TimesFMModel(
    path_or_url="google/timesfm-1.0-200m-pytorch",
    encoder_length=32,
    static_categoricals=["segment_code"],
    time_varying_reals=[f"lag_{HORIZON}"],
    time_varying_categoricals=["dateflag_day_number_in_week"],
)

pipeline_timesfm = Pipeline(model=model_timesfm, horizon=HORIZON, transforms=transforms)

metrics_timesfm, forecast_timesfm, fold_info_timesfm = pipeline_timesfm.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.2s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.6s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.6s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    1.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    1.3s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    1.5s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    1.5s finished
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s finished
[104]:
score = metrics_timesfm["SMAPE"].mean()
print(f"Average SMAPE for TimesFM with exogenous features: {score:.3f}")
Average SMAPE for TimesFM with exogenous features: 6.784